

Report Number: 20-001033/D02.R00

Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Received: 01/27/20 12:30

Customer: Speedy Naturals

Product identity: 250mg CBD Lotion Body/Joint/Muscle

 Client/Metrc ID:
 Lot SN127778

 Laboratory ID:
 20-001033-0001

Summary

Pot	an	CV.	
ГО	.CII	υv.	

Analyte	Result	Limits	Units	Status	CBD-Total per 50g	247 mg/50g
CBC†	0.0303		%		terrere	
CBD	0.493		%		THC-Total per 50g	8.85 mg/50g
CBDV [†]	0.00417		%			
CBG [†]	0.0147		%		(Reported in milligr	rams per serving)
Δ9-THC	0.0177		%			
Analyte per 50g	Result	Limits	Units	Status		
CBC per 50g [†]	15.2		mg/50g			
CBD per 50g	247		mg/50g			
CBDV per 50g [†]	2.09		mg/50g			
CBG per 50g [†]	7.35		mg/50g			
Δ9-THC per 50g	8.85		mg/50g			
· •						

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Terpenes:

Analyte	Percent by weight	Percent of Total	Analyte	Percent by weight	Percent of Total
nerol†	0.164	100.00%	Total Terpenes [†]	0.164	100.00%

Metals:

Less than LOQ for all analytes.

Microbiology:

Less than LOQ for all analytes.

Report Number: 20-001033/D02.R00

Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Received: 01/27/20 12:30

Customer: Speedy Naturals

Product identity: 250mg CBD Lotion Body/Joint/Muscle

Client/Metrc ID: Lot SN127778

Sample Date:

Laboratory ID: 20-001033-0001

Relinquished by: USPS
Temp: 17.1 °C
Serving Size #1: 50 g

Sample Results

Potency			Batch: 2000	0929			
Analyte	Result	Limits	Units	LOQ	Analyze	Method	Notes
CBC†	0.0303		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBC-A [†]	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBC-Total†	0.0303		%	0.0060	01/31/20	J AOAC 2015 V98-6	
CBD	0.493		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBD-A	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBD-Total	0.493		%	0.0060	01/31/20	J AOAC 2015 V98-6	
CBDV [†]	0.00417		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBDV-A†	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBDV-Total†	<loq< td=""><td></td><td>%</td><td>0.0060</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0060	01/31/20	J AOAC 2015 V98-6	
CBG [†]	0.0147		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBG-A [†]	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBG-Total [†]	0.0147		%	0.0060	01/31/20	J AOAC 2015 V98-6	
CBL [†]	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
CBN	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
$\Delta 8\text{-THC}^{\dagger}$	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
Δ9-ΤΗС	0.0177		%	0.0032	01/29/20	J AOAC 2015 V98-6	
THC-A	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
THC-Total	0.0177		%	0.0060	01/31/20	J AOAC 2015 V98-6	
THCV [†]	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
THCV-A†	<loq< td=""><td></td><td>%</td><td>0.0032</td><td>01/29/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		%	0.0032	01/29/20	J AOAC 2015 V98-6	
THCV-Total [†]	< LOQ		%	0.0060	01/31/20	J AOAC 2015 V98-6	
Potency per 50g			Batch: 2000	0929			
Analyte	Result	Limits	Units	LOQ	Analyze	Method	Notes
CBC per 50g [†]	15.2		mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBC-A per 50g [†]	<loq< td=""><td></td><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBC-Total per 50g [†]	15.2		mg/50g	3.13	01/31/20	J AOAC 2015 V98-6	
CBD per 50g	247		mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBD-A per 50g	<loq< td=""><td></td><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>		mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBD-Total per 50g	247		mg/50g	3.13	01/31/20	J AOAC 2015 V98-6	
CBDV per 50g [†]	2.09		mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
- 1			.3 3				

Page 2 of 8

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Pixis quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number: 20-001033/D02.R00

Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Potency per 50g		Batch: 2000	929			
Analyte	Result	Limits Units	LOQ	Analyze	Method	Notes
CBDV-A per 50g [†]	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBDV-Total per 50g [†]	<loq< td=""><td>mg/50g</td><td>3.11</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	3.11	01/31/20	J AOAC 2015 V98-6	
CBG per 50g [†]	7.35	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBG-A per 50g [†]	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBG-Total per 50g [†]	7.35	mg/50g	3.13	01/31/20	J AOAC 2015 V98-6	
CBL per 50g [†]	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
CBN per 50g	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
∆8-THC per 50g [†]	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
Δ9-THC per 50g	8.85	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
THC-A per 50g	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
THC-Total per 50g	8.85	mg/50g	3.13	01/31/20	J AOAC 2015 V98-6	
THCV per 50g [†]	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
THCV-A per 50g [†]	<loq< td=""><td>mg/50g</td><td>1.67</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	1.67	01/31/20	J AOAC 2015 V98-6	
THCV-Total per 50g [†]	<loq< td=""><td>mg/50g</td><td>3.11</td><td>01/31/20</td><td>J AOAC 2015 V98-6</td><td></td></loq<>	mg/50g	3.11	01/31/20	J AOAC 2015 V98-6	

Microbiology								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
E.coli	< LOQ		cfu/g	10	2000792	01/29/20	AOAC 991.14 (Petrifilm)	X
Total Coliforms	< LOQ		cfu/g	10	2000792	01/29/20	AOAC 991.14 (Petrifilm)	Χ
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	2000793	01/29/20	AOAC 2014.05 (RAPID)	Χ
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	2000793	01/29/20	AOAC 2014.05 (RAPID)	Χ

Report Number: 20-001033/D02.R00

Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Solvents	Method	EPA5021	IA			Units µg/g Batch 2	000888	Analyz	e 01/2	29/20 1	10:20 AM
Analyte	Result	Limits L	.oq s	tatus	Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	<loq< td=""><td>380</td><td>100</td><td>pass</td><td></td><td>2-Butanol</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	380	100	pass		2-Butanol	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2-Ethoxyethanol	<loq< td=""><td>160</td><td>30.0</td><td>pass</td><td></td><td>2-Methylbutane</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	160	30.0	pass		2-Methylbutane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2-Methylpentane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2-Propanol (IPA)</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>		30.0			2-Propanol (IPA)	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
2,2-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>2,2-Dimethylpropane</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		30.0			2,2-Dimethylpropane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
2,3-Dimethylbutane	<loq< td=""><td></td><td>30.0</td><td></td><td></td><td>3-Methylpentane</td><td><loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<></td></loq<>		30.0			3-Methylpentane	<loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<>		30.0		
Acetone	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td><td>Acetonitrile</td><td><loq< td=""><td>410</td><td>100</td><td>pass</td><td></td></loq<></td></loq<>	5000	200	pass		Acetonitrile	<loq< td=""><td>410</td><td>100</td><td>pass</td><td></td></loq<>	410	100	pass	
Benzene	<loq< td=""><td>2.00</td><td>1.00</td><td>pass</td><td></td><td>Butanes (sum)</td><td><loq< td=""><td>5000</td><td>400</td><td>pass</td><td></td></loq<></td></loq<>	2.00	1.00	pass		Butanes (sum)	<loq< td=""><td>5000</td><td>400</td><td>pass</td><td></td></loq<>	5000	400	pass	
Cyclohexane	<loq< td=""><td>3880</td><td>200</td><td>pass</td><td></td><td>Ethyl acetate</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	3880	200	pass		Ethyl acetate	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Ethyl benzene	<loq< td=""><td></td><td>200</td><td></td><td></td><td>Ethyl ether</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>		200			Ethyl ether	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Ethylene glycol	<loq< td=""><td>620</td><td>200</td><td>pass</td><td></td><td>Ethylene oxide</td><td><loq< td=""><td>50.0</td><td>30.0</td><td>pass</td><td></td></loq<></td></loq<>	620	200	pass		Ethylene oxide	<loq< td=""><td>50.0</td><td>30.0</td><td>pass</td><td></td></loq<>	50.0	30.0	pass	
Hexanes (sum)	<loq< td=""><td>290</td><td>150</td><td>pass</td><td></td><td>Isopropyl acetate</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	290	150	pass		Isopropyl acetate	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Isopropylbenzene	<loq< td=""><td>70.0</td><td>30.0</td><td>pass</td><td></td><td>m,p-Xylene</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>	70.0	30.0	pass		m,p-Xylene	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Methanol	<loq< td=""><td>3000</td><td>200</td><td>pass</td><td></td><td>Methylene chloride</td><td><loq< td=""><td>600</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	3000	200	pass		Methylene chloride	<loq< td=""><td>600</td><td>200</td><td>pass</td><td></td></loq<>	600	200	pass	
Methylpropane	<loq< td=""><td></td><td>200</td><td></td><td></td><td>n-Butane</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			n-Butane	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
n-Heptane	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td><td>n-Hexane</td><td><loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<></td></loq<>	5000	200	pass		n-Hexane	<loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<>		30.0		
n-Pentane	<loq< td=""><td></td><td>200</td><td></td><td></td><td>o-Xylene</td><td><loq< td=""><td></td><td>200</td><td></td><td></td></loq<></td></loq<>		200			o-Xylene	<loq< td=""><td></td><td>200</td><td></td><td></td></loq<>		200		
Pentanes (sum)	<loq< td=""><td>5000</td><td>600</td><td>pass</td><td></td><td>Propane</td><td><loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>	5000	600	pass		Propane	<loq< td=""><td>5000</td><td>200</td><td>pass</td><td></td></loq<>	5000	200	pass	
Tetrahydrofuran	<loq< td=""><td>720</td><td>100</td><td>pass</td><td></td><td>Toluene</td><td><loq< td=""><td>890</td><td>100</td><td>pass</td><td></td></loq<></td></loq<>	720	100	pass		Toluene	<loq< td=""><td>890</td><td>100</td><td>pass</td><td></td></loq<>	890	100	pass	
Total Xylenes	<loq< td=""><td></td><td>400</td><td></td><td></td><td>Total Xylenes and Ethyl</td><td><loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<></td></loq<>		400			Total Xylenes and Ethyl	<loq< td=""><td>2170</td><td>600</td><td>pass</td><td></td></loq<>	2170	600	pass	

Report Number: 20-001033/D02.R00

Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Pesticides	Method	AOAC	2007.01 & EN	I 15662 (mod)	Units mg/kg	Batch 2000927	Analy	ze 01/30/20 08:15 AM
Analyte	Result	Limits	LOQ Status	Notes	Analyte	Result	Limits	LOQ Status Notes
Abamectin	<loq< td=""><td>0.50</td><td>0.250 pass</td><td></td><td>Acephate</td><td><loq< td=""><td>0.40</td><td>0.250 pass</td></loq<></td></loq<>	0.50	0.250 pass		Acephate	<loq< td=""><td>0.40</td><td>0.250 pass</td></loq<>	0.40	0.250 pass
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantranilipi	role < LOQ	0.20	0.100 pass
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Clofentezine	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Cyfluthrin</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	0.20	0.100 pass		Cyfluthrin	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Cypermethrin	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Daminozide</td><td><loq< td=""><td>1.0</td><td>0.500 pass</td></loq<></td></loq<>	1.0	0.500 pass		Daminozide	<loq< td=""><td>1.0</td><td>0.500 pass</td></loq<>	1.0	0.500 pass
Diazinon	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Dichlorvos</td><td>< LOQ</td><td>1.0</td><td>0.500 pass</td></loq<>	0.20	0.100 pass		Dichlorvos	< LOQ	1.0	0.500 pass
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid	<loq< td=""><td>1.0</td><td>0.400 pass</td></loq<>	1.0	0.400 pass
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox	<loq< td=""><td>1.0</td><td>0.400 pass</td></loq<>	1.0	0.400 pass
lmazalil	< LOQ	0.20	0.100 pass		Imidacloprid	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Methomyl	< LOQ	0.40	0.200 pass		MGK-264	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Myclobutanil	< LOQ	0.20	0.100 pass		Naled	<loq< td=""><td>0.50</td><td>0.250 pass</td></loq<>	0.50	0.250 pass
Oxamyl	<loq< td=""><td>1.0</td><td>0.500 pass</td><td></td><td>Paclobutrazole</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	1.0	0.500 pass		Paclobutrazole	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Parathion-Methyl	<loq< td=""><td>0.20</td><td>0.200 pass</td><td></td><td>Permethrin</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.200 pass		Permethrin	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Phosmet	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Piperonyl buto</td><td>xide < LOQ</td><td>2.0</td><td>1.00 pass</td></loq<>	0.20	0.100 pass		Piperonyl buto	xide < LOQ	2.0	1.00 pass
Prallethrin	<loq< td=""><td>0.20</td><td>0.200 pass</td><td></td><td>Propiconazole</td><td>< LOQ</td><td>0.40</td><td>0.200 pass</td></loq<>	0.20	0.200 pass		Propiconazole	< LOQ	0.40	0.200 pass
Propoxur	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Pyrethrin I (tota</td><td>al) < LOQ</td><td>1.0</td><td>0.500 pass</td></loq<>	0.20	0.100 pass		Pyrethrin I (tota	al) < LOQ	1.0	0.500 pass
Pyridaben	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Spinosad</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass		Spinosad	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Spiromesifen	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Spirotetramat</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass		Spirotetramat	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Spiroxamine	<loq< td=""><td>0.40</td><td>0.200 pass</td><td></td><td>Tebuconazole</td><td><loq< td=""><td>0.40</td><td>0.200 pass</td></loq<></td></loq<>	0.40	0.200 pass		Tebuconazole	<loq< td=""><td>0.40</td><td>0.200 pass</td></loq<>	0.40	0.200 pass
Thiacloprid	<loq< td=""><td>0.20</td><td>0.100 pass</td><td></td><td>Thiamethoxam</td><td><loq< td=""><td>0.20</td><td>0.100 pass</td></loq<></td></loq<>	0.20	0.100 pass		Thiamethoxam	<loq< td=""><td>0.20</td><td>0.100 pass</td></loq<>	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass					

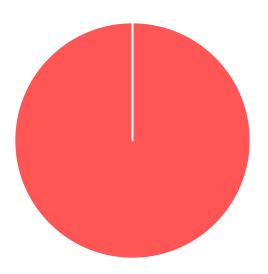
Report Number: 20-001033/D02.R00

Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Terpenes	Method	J AOAC	2015 V98-6		Units %	Batch 2000833	Analyz	ze 01/28/20 11:56 AM
Analyte	Result	LOQ	% of Total	Notes	Analyte	Result	LOQ	% of Total Notes
nerol†	0.164	0.020	100.00%		(-)-a-Terpineol†	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
(-)-caryophyllene oxide†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(-)-GuaioI[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		(-)-GuaioI [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
(-)-IsopulegoI [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(-)-ß-Pinene[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		(-)-ß-Pinene [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
(+)-Borneol [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(+)-Cedrol[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		(+)-Cedrol [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
(+)-fenchol [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(+)-Pulegone[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		(+)-Pulegone [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
(±)-Camphor [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(±)-cis-Nerolidol</td><td>† < LOQ</td><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%		(±)-cis-Nerolidol	† < LOQ	0.020	0.00%
(±)-fenchone [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>(±)-trans-Nerolic</td><td>dol† < LOQ</td><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%		(±)-trans-Nerolic	dol† < LOQ	0.020	0.00%
(R)-(+)-Limonene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>a-Bisabolol†</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		a-Bisabolol†	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
a-cedrene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>a-phellandrene†</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		a-phellandrene†	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
a-pinene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>a-Terpinene†</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		a-Terpinene†	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
Camphene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>cis-ß-Ocimene†</td><td><loq< td=""><td>0.006</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		cis-ß-Ocimene†	<loq< td=""><td>0.006</td><td>0.00%</td></loq<>	0.006	0.00%
d-3-Carene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Eucalyptol[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		Eucalyptol [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
farnesene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>gamma-Terpiner</td><td>ne[†] < LOQ</td><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%		gamma-Terpiner	ne [†] < LOQ	0.020	0.00%
Geraniol†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Geranyl acetate[†]</td><td>< LOQ</td><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%		Geranyl acetate [†]	< LOQ	0.020	0.00%
Humulene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Isoborneol†</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		Isoborneol†	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
Linalool†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Menthol[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		Menthol [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
p-Cymene [†]	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Sabinene[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		Sabinene [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
Sabinene hydrate†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>ß-Caryophyllene</td><td>e[†] < LOQ</td><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%		ß-Caryophyllene	e [†] < LOQ	0.020	0.00%
B-Myrcene†	<loq< td=""><td>0.020</td><td>0.00%</td><td></td><td>Terpinolene[†]</td><td><loq< td=""><td>0.020</td><td>0.00%</td></loq<></td></loq<>	0.020	0.00%		Terpinolene [†]	<loq< td=""><td>0.020</td><td>0.00%</td></loq<>	0.020	0.00%
trans-ß-Ocimene†	< LOQ	0.013	0.00%		valencene†	< LOQ	0.020	0.00%
Total Terpenes	0.164							

Report Number: 20-001033/D02.R00


Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Received: 01/27/20 12:30

nerol

100.00 %

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	< LOQ		mg/kg	0.0316	2000951	01/30/20	AOAC 2013.06 (mod.)	X, H
Cadmium	< LOQ		mg/kg	0.0316	2000951	01/30/20	AOAC 2013.06 (mod.)	X, H
Lead	< LOQ		mg/kg	0.0316	2000951	01/30/20	AOAC 2013.06 (mod.)	X, H
Mercury	<loq< td=""><td></td><td>mg/kg</td><td>0.0158</td><td>2000951</td><td>01/30/20</td><td>AOAC 2013.06 (mod.)</td><td>X, H</td></loq<>		mg/kg	0.0158	2000951	01/30/20	AOAC 2013.06 (mod.)	X, H

Mycotoxins								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aflatoxin B1 [†]	< LOQ		μg/kg	5.00	2000941	01/30/20	AOAC 2007.01 & EN 15662	
Aflatoxin B2 [†]	<loq< td=""><td></td><td>μg/kg</td><td>5.00</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	5.00	2000941	01/30/20	AOAC 2007.01 & EN 15662	
Aflatoxin G1 [†]	<loq< td=""><td></td><td>μg/kg</td><td>5.00</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	5.00	2000941	01/30/20	AOAC 2007.01 & EN 15662	
flatoxin G2†	<loq< td=""><td></td><td>μg/kg</td><td>5.00</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	5.00	2000941	01/30/20	AOAC 2007.01 & EN 15662	
eoxynivalenol†	<loq< td=""><td></td><td>μg/kg</td><td>200</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	200	2000941	01/30/20	AOAC 2007.01 & EN 15662	
umonisin B1†	<loq< td=""><td></td><td>μg/kg</td><td>200</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	200	2000941	01/30/20	AOAC 2007.01 & EN 15662	
umonisin B2†	<loq< td=""><td></td><td>μg/kg</td><td>200</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	200	2000941	01/30/20	AOAC 2007.01 & EN 15662	
IT2-Toxin†	<loq< td=""><td></td><td>μg/kg</td><td>40.0</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	40.0	2000941	01/30/20	AOAC 2007.01 & EN 15662	
livalenol†	<loq< td=""><td></td><td>μg/kg</td><td>400</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μ g/kg	400	2000941	01/30/20	AOAC 2007.01 & EN 15662	
Chratoxin A†	< LOQ		μg/kg	5.00	2000941	01/30/20	AOAC 2007.01 & EN 15662	
Ochratoxin B [†]	< LOQ		μg/kg	2.00	2000941	01/30/20	AOAC 2007.01 & EN 15662	
2-Toxin [†]	< LOQ		μg/kg	20.0	2000941	01/30/20	AOAC 2007.01 & EN 15662	
earalenone†	<loq< td=""><td></td><td>μg/kg</td><td>200</td><td>2000941</td><td>01/30/20</td><td>AOAC 2007.01 & EN 15662</td><td></td></loq<>		μg/kg	200	2000941	01/30/20	AOAC 2007.01 & EN 15662	

Report Number: 20-001033/D02.R00

Report Date: 01/31/2020 **ORELAP#:** OR100028

Purchase Order:

Received: 01/27/20 12:30

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

cfu/g = Colony forming units per gram g = Gram μ g/g = Microgram per gram μ g/kg = Micrograms per kilogram = parts per billion (ppb) mg/kg = Milligram per kilogram = parts per million (ppm) mg/50g = Milligram per 50g % = Percentage of sample

Glossary of Qualifiers

H: Holding time was exceeded. X: Not ORELAP accredited.

% wt = μ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager